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The Sirens of Eleven Dimensions
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While most theorists are tied to the mast of four dimensions, some have found it

irresistible to speculate about eleven dimensions, the domain of M-theory. We outline

a program which starts from the light-cone description of supergravity, and tracks

its divergences to suggest the existence of an infinite component theory which in the

light-cone relies on the coset F4/SO(9), long known to be linked to the Exceptional

Jordan Algebra

1 Souvenirs

I met Ian Kogan more than ten years ago. I remember him as being interested in
everything, attacking problems like a cavalry captain, fearlessly and enthusiasti-
cally. Growing up in the Soviet Union, he was neither a particle nor a condensed
matter physicist, he was simply put, a physicist. I recall his gracious invitation
to lunch in Oxford a few days after the birth of his child! Ian impressed all
around him with his child-like interest in new ideas, uninhibited imagination,
incredible energy and obvious love of physics. His premature loss is one of those
events in life that leave everyone who knew him, sadly diminished.

To honor Ian’s memory, I wanted to write something substantive and spec-
ulative enough to have aroused his interest. Thus follows a description of a
program that has occupied me for the last seven years. It has not yet reached
the stage of obvious physical import, but it has unearthed unique mathematical
structures, and raised the specter of a singular theory in eleven dimensions with
an infinite number of massless particles of arbitrarily high helicities.

2 Eleven Dimensions

Superstrings seemed to be, up to ten years ago, the most beautiful theories ever
invented since they naturally contain Nature’s Interactions, Gravity and Yang-
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Mills theories, even though they live in ten dimensions and are supersymmetric.
From the group-theoretical standpoint, two and ten dimensions are the natural
settings for maximum confusion between fermions and bosons; two dimensions
because there is no transverse little group to differentiate between them and ten
dimensions because of the triality of SO(8), the transverse little group.

Flat eleven-dimensional space-time is the locale for N = 1 Supergravity[1],
the largest supersymmetric local field theory with maximum helicity two (when
reduced to four dimensions), widely thought to have ultraviolet divergences. It
came as a surprise when evidence for much more structure in eleven dimensions
was first proposed[2]: in eleven dimensions lurks a theory that links superstring
theories through various compactifications and dualities, and whose infrared
limit is N = 1 Supergravity.

Just like strings imply two-forms[3], one may have thought the natural ex-
tended object in eleven-dimensions to be a membrane, since N = 1 supergravity
contains a three-form. Unfortunately, membranes seem impossible to quantize,
unles there is a (so far unknown) holographic principle to relate membranes to
strings. Glimpses of M-theory exist in the litterature, and its shadows on lower-
dimensional manifolds are very well defined, but they do not provide enough
information to reconstruct the theory in eleven dimensions. There must be
something very special in eleven dimensions that relates bosons and fermions,
and evidence for it might be present in its light-cone little group SO(9).

Perhaps the most interesting feature of N = 1 supergravity is that it di-
verges in the ultraviolet. Historically, attempts to understand divergences have
proven vey useful, either as generating operators at small distances in the spirit
of effective local field theories, or in pointing to spontaneous breakdown of sym-
metries in the formulation of the Standard Model. Supergravity divergences are
presumably tamed by M-theory, and we hope that in learning their structure,
we might learn something about M-theory itself.

The one local field theory in four dimensions without ultraviolet divergences[4]
is N = 4 Super-Yang-Mills, which is a compactified form of N = 1 Super-
Yang-Mills in ten dimensions. Curtright conjectured[5] that the cancellation
of its divergences between bosons and fermions was directly related to its ten-
dimensional origin and the triality of the transverse little group SO(8). As
N = 8 Supergravity in four dimensions is the compactified form of N = 1
supergravity in eleven dimensions, he went on to attribute its divergences to
group-theoretical properties SO(9) representations of that theory.

3 Light-Cone Description of N = 8 Supergravity

Since we think that evidence for structure can be found in that of the massless
little group, it is convenient to discuss N = 1 Supergravity in eleven dimensions
in terms of light-cone variables. It is sufficient to consider its compactified
version to four dimensions where the theory is most economically described
with the help of eight Grassmann variables, θm, and their conjugates, θ̄m, m =
1, 2, . . . , 8, each transforming as the real spinor representation of SO(7). The

2



128 bosonic fields of N = 1 supergravity are contained in the chiral superfield[6]

Φ(y, θ) =
1

∂+2
h(y) +

i

2
θmθn 1

∂+
Āmn(y) − 1

4!
θmθnθpθq Cmnpq

+i [ θ6]tu, ∂+ Atu(y) + [ θ8] ∂+2 h̄(y) , (1)

where we have used the notation

[ θ6]tu =
1

6!
ǫmnpqrstu θmθnθpθqθrθs , [ θ8] =

1

8!
ǫmnpqrstu θmθnθpθqθrθsθtθu ,

(2)
together with its fermion counterparts, not shown here. In four dimensional lan-
guage, h and h̄ describe the graviton, Amn and Āmn the helicity-one and minus
one fields , respectively, and C̄mnpq the seventy helicity-zero fields. Complex
conjugation is achieved through Poincaré duality

Cmnpq =
1

4!
ǫmnpqrstu C̄rstu . (3)

The fields are only functions of the light-cone space-time variables

y = (x, x̄, x+, y− ≡ x− − i√
2

θm θ̄m ) , (4)

and form the 44 and 84-dimensional representations of SO(9), while the fermions
label its 128-dimensional representation.

The pattern of ultraviolet divergences is related to the group theoretical
properties of the light-cone little group, and it has been known for sometime[5]
that the invariants of these three representations satisfy interesting relations.

SO(9) has rank four and thus four Dynkin indices, of order I
(n)
irrep, with n =

2, 4, 6, 8, (n = 0 gives the dimension of the representation). Explicitly

I
(n)
128

− I
(n)
44

− I
(n)
84

= 0 , n = 0 , 2 , 4 , 6 ,

I
(8)
128

− I
(8)
44

− I
(8)
84

= −192 . (5)

The case n = 0 reflects equal number of fermions and bosons, the hallmark
of supersymmetry, but the others are more revealing. Curtright’s conjecture is
that the incomplete cancellation of the eight-order indices is the root cause of
the divergences of N = 8 Supergravity.

Magically, SO(9) contains an infinite set of three irreducible representations[7],
called Euler Triplets, with the similar relations.

4 Euler Triplets

Euler Triplets are sets of three representations of SO(9) with the same rela-
tions among themselves as the three representations of Supergravity in eleven

3



dimensions. While the simplest Euler triplet describes the physical degrees of
freedom of Supergravity with spin no higher than two, all others contain higher
spin fields. In a relativistic theory, they represent massless particles. As a result
their use in a covariant and local physical interacting theory is severely limited[8]
by well-known no-go theorems: any finite number of Euler triplets cannot lead
to an acceptable interacting physical theory. Fortunately there is an infinite
number of them, leaving open the possibility of a non-local theory. In addition,
Euler triplets are naturally expressed in terms of light-cone coordinates, so that
Lorentz invariance may not be manifest until the full set is brought in.

Euler triplets {A ,B ,C }, where A, B, C are representations of SO(9),
arise from the three equivalent embeddings of SO(9) into F4[9]. To each repre-
sentation of F4 corresponds one triplet with properties

I
(n)
A

− I
(n)
B

− I
(n)
C

= 0 , n = 0 , 2 , 4 , 6 ,

I
(8)
A

− I
(8)
B

− I
(8)
C

= −192 DF4
. (6)

Here DF4
is the dimension of the F4 representation associated with the triplet.

In general the largest representation need not be fermionic, but there is an
infinite subset for which the largest representation A is a spinor representation,
while the other two are bosonic. This subset (generally not supersymmetric)
contains therefore as many bosons as fermions and are the true generalization
of the supergravity multiplet.

In mathematical term, each Euler triplet can also be described by chiral
light-cone superfields[10], but the difference with supergravity is that the fields
h, Amn, Cmnpq and their conjugates are now functions of internal F4/SO(9)
coset variables.

Chiral fields that describe Euler triplets satisfy Kostant’s equation[11], which
fixes the functional form of these fields in terms of the internal variables that
label the coset. In terms of the Clifford algebra

{Γa , Γb } = 2 δab , a, b = 1, 2, . . . , 16 , (7)

generated by (256 × 256) matrices, Kostant’s equation is

K/ Ψ =
16
∑

a=1

Γa T a Ψ = 0 , (8)

where Ta are the sixteen F4 generators in the coset F4/SO(9). In terms of
oscillators[12],

Ta = − i

2

3
∑

ν=1

{

(γi)
ab

(

A
[ν]†
i B

[ν]
b − B

[ν]†
b A

[ν]
i

)

−
√

3
(

B[ν]†
a A

[ν]
0 − A

[ν]†
0 B[ν]

a

)}

,

(9)
where the nine γi are the (16×16) Clifford matrices. These operators are written

in terms of three copies of 26 bosonic oscillators A
[ν]
0 , A

[ν]
i , i = 1, · · · , 9, B

[ν]
a , a =
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1, · · · , 16, and their hermitian conjugates. Under SO(9), the A
[ν]
i transform as

9, B
[ν]
a as the spinor 16, and A

[ν]
0 is a scalar. They satisfy the commutation

relations of bosonic harmonic oscillators

[ A
[ν]
i , A

[ν′] †
j ] = δij δν ν′

, [ A
[ν]
0 , A

[ν′] †
0 ] = δν ν′

, (10)

as well as for the SO(9) spinor operators

[ B[ν]
a , B

[ν′] †
b ] = δab δν ν′

, (11)

in possible conflict with spin-statistics. Remarkably the Euler triplets with equal
number of bosons and fermions are precisely those for which the B operators
appear quadratically. This links spin-statistics connection with fermion-boson
equality, something we have noticed but not understood[13]. Even though the
number of fermions and bosons are equal, the Euler triplets by themselves do
not support supersymmetry except for the supergravity triplet.

The meaning of the internal coordinates associated with these harmonic
oscillators is not clear but there is one very intriguing connection with a structure
that appeared in the early days of Quantum Mechanics, the Exceptional Jordan
Algebra, derived by Jordan, Von Neumann and Wigner in 1935.

5 Divergences

We have alluded to the relation between the litlle group and divergences. To
make it specific, consider the well-known one-loop beta function

β =
11

3
I
(2)
adj −

2

3
I
(2)
f − 1

3
I
(2)
H , (12)

where the I
(2)
adj, f, H are the quadratic Dynkin indices associated with the adjoint

(for the gauge bosons), with spin one-half Weyl fermions, and with complex spin
zero fields, respectively. These “external” group theoretical factors are given by

Tr (T A
r T B

r ) = I(2)
r δAB , (13)

where A, B run over the gauge group, and T A
r are the representation matrices

in the r representation. It is often not appreciated that the numerical factors
also stem from group theory, this time that of the light-cone little group. In
four dimensions, where the massless little group is SO(2) with helicity as the
sole quantum number, Hughes[14] showed that these coefficients are given by

1

3
(1 − 12h2) , (14)

where h is the helicity of the particle circulating around the loop, whose square
can be viewed as the quadratic Dynkin index of the little group. If one applies
this formula to N = 4 Super-Yang-Mills, the numerical coefficients are easily
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traced to the quadratic Dynkin index of the SO(8) the little group in ten di-
mensions, and Curtright traced its vanishing to the triality of SO(8). At higher
loops, it is easy to see that higher order Dynkin indices are put in play.

Now if we look at N = 8 supergravity in four dimensions, we expect the
numerical coefficients in front of its divergences to be expressed in terms of the
Dynkin indices of its mother theory in eleven dimensions, so that the relevant
group is SO(9). A necessary condition for cancellation between bosons and
fermions is that the sum of their Dynkin indices cancel (it may not be suffi-
cient since there are three representations and cancellation is a linear relation
which might not work for subdivergences). Since the Dynkin sum rule does not
work for the eighth-order index, this hypothesis points to a divergence in the
three loop four-graviton amplitude, which is in accord with arguments based on
counterterms[15].

Following Curtright, we assume that the leak in the eight-order indices causes
the divergences. Can the addition of Euler triplets alleviate the situation? Un-
fortunately, the eighth-order deficit leak is of the same sign as that of supergrav-
ity, so that any one triplet can only add to the problem (unless the statistics of
the triplet members is reversed). On the other hand from the no-go theorems,
the number of Euler triplets must be infinite, so that the deficit is written as an
infinite sum, like a trace over the dimensions of F4 representations that appear
in the hypothesized structure.

For Euler triplets to be relevant to the divergences and to the physics, they
must be associated with an algebraic object that contains an infinite number of
F4 representations such that their total (weighted?) sum of their representations
vanish, like a character formula

Tr I =
∑

DF4
= 0 . (15)

Possible algebraic structures are Kac-Moody algebras, or perhaps deformed al-
gebras, with each triplet entering with a power of a root of unity in the sum,
with the requirement that their quantum trace vanishes. This slim lead into the
possible structure that organizes the Euler triplets is the only one we have at
the moment.

The search for a natural generalization of supergravity in eleven dimensions
has led us very far in the mathematical world, but not so far in the physics one.
Yet in the process we have uncovered several singular mathematical structures,
in particular the need for an algebraic structure that contains an infinite number
of F4 representations, and also to the charge space of the Exceptional Jordan
Algebra. The appearance of these unique mathematical structures that are very
specific to eleven dimensions may well be accidental, but experience in string
theory shows that mathematical accidents often lead turn into deep insights.
More work needs to be done to determine if this is the case.
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